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Note 

The Truncated Kullback Statistic as an Objective Function for 

Fitting Partially Known Probability Vectors 

The Kullback statistic [l, 21, Ik , is a positive definite [3, 41 measure of the difference 
between two normalized probability vectors P(l) and P), 

I,(P(l), P’a’) = i pp log, (pi’l’/#‘), 
i=l 

(1) 

where 

and 

P(l) = (p?),..., p(ly n 

P(Z) = (p?),..., p:y. 

It may be defined as the negative of the expectation value of the surprisals Ui , 
Vi = -log,(p~“/#). The Kullback statistic has attracted much interest in physics 
and chemistry [5-g]. The Kullback statistic has already been used in the context 
of interest here, which is to fit probability vectors [lo]. 

A contemporary problem in chemical physics is the determination of the proba- 
bilities of the quantum states, 0 to it, of the products of a chemical reaction [l 11. 
The range, 0 to n, of quantum states is determined by the energy available to the 
reaction (which is readily calculated [12]). Experimentally it may be possible to detect 
only a subset of the final states and to measure only the relative probabilities of, e.g., 
the states s to IZ (S > 0). We may then calculate the experimental values of the 
ratios of the probabilities of states s + 1 to n to the probability of state s; these are 
the experimental probability ratios qi , j = s + 1 to n. (If, on account of physical 
reasons, the probability ratios of adjacent states s to n are determined experimentally, 
the ratios s + 1 to n can be calculated only at the expense of error propagation.) 

Theoretically it is possible in principle to calculate the complete probability vector 
(PhZ’,PIZ’ ,..., py, P$!l ,***, pg))r and, from this, the theoretical values for the probability 
ratios, pzl/pj2’ ,..., pr’/pi2’, which may be compared with the experimental values, qj . 
If the theoretical method involves unknown variables (related to, say, the potential 
between separating products) we must find the “best” values of these variables. The 
“best” values of the variables are those values which minimize the distance between 
the calculated and experimental probability vectors or minimize the full Kullback 
statistic (1) [l-4, IO]. However, in the general case, we do not know the experimental 
probability vector. Only the probability ratios q9+r ,..., qn are known. 
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One method of determining optimum values of the variables is to minimize the sum 
of squares of differences, C Rk2, between observed and calculated probability ratios, 

c Rk2 = f (qk _ qplcd))2, 
k=s+l 

where 

kalcd) 
qk k=s+lton. 

The optimum probability vector derived by minimizing this objective function will 
be denoted by Pc2)(C Rk2). 

If we can express the relative probability ratios as ratios to a common denominator 
(as described above), an alternative objective function, the truncated Kullback 
statistic, may be used. We can incorporate the known probability ratios, qi , in a 
normalized probability vector using A defined in 

gP + A i qi = 1. 
j=s+l 

The truncated Kullback statistic, I,‘, is simply 

(2) 

where 

pjl) = .4qj ) j=s+1ton. 

The optimum probability vector derived by minimizing Ik’ will be denoted by 
Pc2’(z,‘). 

Generally speaking, the Kullback statistic (1) assigns small weights to surprisals of 
low probabilities. The truncated Kullback statistic (2) omits from the summation (1) 
unknown probabilities, thereby restricting the measure of uncertainty to known 
(relative) probabilities. When the unknown probabilities are small, we have found 
that the truncated Kullback statistic may be superior to a sum of squares of residuals 
as an objective function. That is, according to the criteria outlined above, the optimum 
probability vector, P’2)(&‘), derived by minimizing IIC’ with respect to the variables 
in a theoretical model, may be closer (as measured by distance or the full Kullback 
statistic (1)) to the experimental or true probability vector than Pc2)(c Rk2). 

The simple bootstrap model of M. J. Berry has been used to calculate the probability 
vector of the vibrational states of a diatomic product of a chemical reaction [13-151. 
There are two variables to be optimized and one parameter in this model. The 
variables are the internuclear separation of the diatomic product at the saddle point 
of the potential surface, r,*, and the coupling constant, (Y, between the diatomic 
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product and the continuum of resonant energy levels of the polyatomic fragment [ 151. 
The parameter, T, is the time for the fragments to separate measured in half-lives 
of the decay of the highest significantly populated vibrational level of the diatomic [ 151. 
Previous grid searches have demonstrated that this model is unimodal in reZ and 01 
[ 15, 161. Accordingly, for low-accuracy optimization, we used Golden Sections [17] 
to find the values of Y,: and 01 which minimize 1,’ or C Rk2. 

Three examples are presented to discuss the utility of the truncated Kullback 
statistic. The relative probabilities (given in Table II under “Ratios”) for obtaining 
the diatomic product in its vibrational levels are all expressed relative to the proba- 
bility of the lowest vibrational level (v’ = 0). In [13, Example l] and [16, Example 31 
the product is hydrogen fluoride formed from the reaction of fluorine atoms with 
molecular hydrogen and oxygen atoms with vinyl fluoride, respectively. In [15, 
Example 21 the product is hydrogen chloride formed by flash photolysis of vinyl 
chloride. 

TABLE I 

Optimized Parameters 

Example 1 Example 2 

Objective function I,’ CR/t2 1, CRk’ 

I’” 1.55 1.38 1.88 1.90 

Rb - -3.9 -3.8 

7c - 1.6 1.6 

Example 3 

I,’ CRbZ 

1.47 1.16 

-4.3 -4.8 

4.6 3.2 

a The bond length of the diatomic at the transition state [15]. The Golden Section is less than 
0.05 A. 

b The Briggs logarithm of the intercontinuum coupling constant in cm [1.5]. The Golden Section 
is less than 0.5. 

c The time for relaxation [15]. The step size of the initial value problem is 0.2. 

It is clear from the results displayed in Table I that using the truncated Kullback 
statistic as an objective function can result in a minimum different from that obtained 
by using a sum of squares of residuals for known probability ratios. The optima 
obtained using 1,’ for Examples 1 and 2 are close to those chosen by Berry 
[13, 151. 

In Examples 1 and 3, only one probability is missing, so the experimental ratios 
may be normalized to give the experimental probability vectors PcexP). ptexp) may then 
be compared with Pt2)(Ii) and F2)O: Rk2) by calculating the distance ( Fexp) - PC2) I 
and the full Kullback statistic (1). These results are recorded in Table II. 
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In [13, Example I], the distance between P (exn) and the optimum vector obtained 
using the truncated Kullback statistic, P’(Z,‘), is smaller than the distance between 
Pcexp) and the optimum vector, P@)(C Rk2), obtained using the sum of squares of 
residuals as the objective function (Table IT). Furthermore, the full Kullback statistic 
(1) for Pcz)(Ik’) compared to P (exp) is smaller than for Pc2)(C Rk2). In the particular 
case of Example 1, the distance between experimental and calculated vectors itself 
could have been used as the objective function, but, in the more typical case [I I], 
such as [I 5, Example 21, only a partial sum can be performed. Subject to this restriction 
the truncated Kullback statistic gives a better optimum vector for Example I. In 
[16, Example 31 the truncated Kullback statistic produces an optimum vector 
inferior to that found using a sum of squares of residuals. In Example 3, two of the 
three known probabilities are small so the natural weighting of the Kullback statistic 
is distorted. In Example 2, the minima derived from the two objective functions 
cannot be distinguished to within the precision of optimization. 

Using the truncated Kullback statistic as the objective function may give ratios of 
probabilities in poorer agreement with experiment than those obtained by using a sum 
of squares of residuals. The theoretically significant quantity is the true probability 
vector, however. If the experimentally unknown probabilities are not large it is clear 
that using the truncated Kullback statistic as an objective function can lead to a better 
calculated probability vector and, therefore, truer values of the unknown parameters 
in the theory. 

ACKNOWLEDGMENTS 

We thank the Dalhousie Computer Centre for facilitating these calculations. We acknowledge 
support from the Defence Research Board through Grant 9530-l 15 to W. E. Jones. 

REFERENCES 

1. S. KULLBACK, Ann. Math. Sratist. 22 (1951), 79. 
2. S. KULLBACK, “Information Theory and Statistics,” Wiley, New York, 1959. 
3. L. BRILLOUIN, “Science and Information Theory,” Academic Press, New York, 1962. 
4. A. J. KHINCHIN, “Mathematical Foundations of Information Theory,” Dover, New York, 

1957. 
5. F. SCHOGL, Z. Physik 249 (1971), 1. 
6. A. HOBSON AND B. K. CHENG, J. Statist. Phys. 7 (1973), 301. 
7. M. TRIBUS AND R. Rossr, J. Stufist. Phys. 9 (1973), 331. 
8. R. B. BERNSTEIN AND R. D. LEVINE, Adu. At. Mol. Phys. 11 (1975), 215. 
9. U. DINUR AND R. D. LEVINE, Chem. Phys. 9 (1975), 17. 

10. U. DINUR AND R. D. LEVINE, Chem. Phys. Lett. 31 (1975), 412. 
11. T. CARRINGTON AND J. C. POJANYI, Chemiluminescent Reactions, in “MTP International Review 

of Science: Chemical Kinetics” (J. C. Polanyi, Ed.), Physical Chemistry, Series 1, Vol. 9, Chap. 5, 
Butterworth, London, 1972. 

12. D. H. MAYLOTTE, J. C. POLANYI, AND K. B. WOODALL, 1. Chem. Phys. 57 (1972), 1547. 
13. M. J. BERRY, Chem. Phys. Lett. 27 (1974), 73. 



THE TRUNCATED KULLBACK STATISTIC 451 

14. M. J. BERRY, Chem. Phys. Lett. 29 (1974), 329. 
15. M. J. BERRY, J. Chem. Phys. 61(1974), 3114. 
16. W. E. JONES, G. MATINOPOUL~~, J. S. WASSON, AM) M. Lru, in preparation. 
17. M. J. Box, D. DAVIES, AND W. H. SWANN, “Non-Linear Optimization Techniques,” Oliver and 

Boyd, Edinburgh, 1969. 

RECEIVED: May 24, 1976; REVISED: September 13, 1976 

W. E. JONES, G. MATINOPOUL~S, AND J. S. WASSON 

Department of Chemistry 
Dalhousie University 

Halifax, Nova Scotia, Canada B3H 4J3 


